Blog

¡Contenido cerámico técnico con valor para ti!

Nitruro de boro pirolítico (PBN) y grafito pirolítico (PG): uso en aplicaciones de alta temperatura

Fecha de publicación: 18/02/2025 16:46:09

Introducción

Pyrolytic Boron Nitride (PBN) and Pyrolytic Graphite (PG) have taken center stage when dealing with the functionality of high-temperature applications. This is because they are very efficient materiales refractarios.  In this article, you will learn about PBN, and PG, their differences, real-world applications and how lucrative the business is in case you’re looking to invest.


Diferencia entre el nitruro de boro pirolítico (PBN) y el grafito pirolítico (PG)

Pyrolytic boron nitride is a high-purity ceramic material produced through chemical vapor deposition. It is odorless and has a crystal structure that is hexagonal which makes people easily mistake it for Graphite. It goes by the trade name, PBN. Pyrolytic Boron Nitride is one of the strongest and purest forms of boron nitride (about 99.9% purity). The reason for this is because of the closely packed anisotropic structure and the intense heat it undergoes while being produced.

Pyrolytic graphite is a special graphite produced by decomposing hydrocarbon gas at extremely high temperatures in a vacuum furnace.


Characteristics of Pyrolytic Boron Nitride And Pyrolytic Graphite

PBN mostly has an orange or whitish appearance with a density of 2.15 g/cm3.   The surface is smooth and without pores. The tensile strength of PBN is an impressive  153.84 N/mm2 and its elastic modulus is 235690 N/mm2. It has a dielectric strength of 56k V/mm and a very high thermal shock resistance which makes it able to withstand mechanical stress.

PBN’s strength increases with a rise in temperature until it reaches 2473o K. When the temperature rises to 3273o K, the pyrolytic boron nitride compound disintegrates into boron and nitride. Pyrolytic boron nitride has a low coefficient of expansion (2.1 x 10-6°/C) which makes it maintain a stable shape even under extreme temperatures and pressure.

Furthermore, the fact that it is chemically inert means it doesn’t get rust easily. Why? It’s sufficiently able to resist attacks from chemicals or acids.

Figura 1: Nitruro de boro pirolítico (PBN)

PG is a black solid that occurs mostly in the form of a disc, sheet, or plate. It has an ultimate tensile strength of 200 MPa. Its density falls between 1.30 and 2.265 g/cm3. It also has a perpendicular thermal conductivity of 80 W/m·K

Además, el PG puede soportar una expansión térmica de hasta 20 µm/m·°C. Su resistividad eléctrica perpendicular se encuentra entre 0,15 y 0,25 Ω·cm. Por lo tanto, su resistencia última a la compresión, flexión y tensión aumenta con el aumento de la temperatura.

Fig. 2: Grafito pirolítico (PG)


Applications of Pyrolytic Boron Nitride (PBN) and Pyrolytic Graphite in High-Temperature Environments

Electrónica de alta potencia

PBN comprises ceramic matrix nanocomposites making it good for electrical insulation and allowing it to be stable and function effectively in high temperatures. It also means PBN can also help you produce high strength wafers for any high temperature demanding - power electronics device.

Pyrolytic Graphite tends to act more as an efficient heat dissipator in high-energy electronics you see today. It can make your equipment and gadgets last longer without overheating. PBN can also help you manufacture OLED Displays and LED Lights for electronics.

Fabricación de semiconductores

PBN and PG also play a significant role in the semiconductor industry. Crystal growth and efficient heat dissipation in semiconductors is enhanced using a Crisol PBN Gracias a sus propiedades puras y a su capacidad para garantizar la estabilidad térmica, los componentes electrónicos funcionan de forma óptima gracias a la ausencia de contaminación.

Uniform heating in the wafer manufacturing process of semiconductors is the function of highly oriented pyrolytic graphite (HOPG). It’s this function that ensures the process of semiconductor fabrication.

Fig. 3: Crisol PBN

Componentes del reactor nuclear

El material cerámico refractario presente en el PBN y el PG les permite resistir condiciones extremas de radiación y calor. El PG, en particular, presenta una alta estabilidad, lo que lo convierte en un material adecuado para el diseño de núcleos de reactores. Por el contrario, las propiedades de aislamiento térmico y estabilidad química del PBN garantizan la seguridad y la eficiencia de los componentes del reactor.

Ingeniería aeroespacial

The refractory linings of aerospace machines, aeroplanes and jets make use of pyrolytic boron nitride materials because they tend to facilitate seamless function during flight and re-entry.

In particular, PG is composed of cmc composites that reinforce its capacity for thermal conduction which makes it a good heat shield to sensitive spacecraft components.

Medicamento

Most equipment used in sterilization use components made from PBN and PG due to the thermal stability it can provide as well as its biocompatible nature. This thermal stability allows for the production of medical implants that can survive intense conditions without being mordant.

Aplicaciones de microondas y RF

The thermal stability and insulation properties of PBN allows it to function as major components of windows and substrates in microwaves. Highly Ordered Pyrolytic Graphite (HOPG) can also efficiently dissipate heat in RF devices and make them function at an optimal level.


El lucrativo negocio de PGN y PG

Pyrolytic boron nitride (PBN) and pyrolytic graphite (PG) carry huge potentials for major innovations in several lucrative industries. For instance, being in the PBN and PG business gives you an edge in the electrical industry. This is because of the rise in the interest of PBN-PG composite heating elements.

Los elementos calefactores compuestos PBN-PG son muy duraderos. La deposición química de vapor (CVD) se utiliza para depositar PG sobre los elementos PBN y crear cerámicas duraderas que se utilizan en semiconductores. Estos semiconductores son componentes de microchips en ordenadores portátiles, teléfonos móviles, robots, etc. Esto significa que los elementos calefactores compuestos PBN-PG tienen una gran demanda.

Si desea incursionar en este negocio, le garantizamos grandes ganancias y crecimiento. Los elementos calefactores compuestos PBN-PG ofrecen opciones más eficientes a los ingenieros, especialmente a los fabricantes de computadoras portátiles, teléfonos móviles, tabletas, etc., permitiéndoles crear productos que disipan el calor fácilmente.

Fig. 4: Elemento calefactor compuesto PBN-PG

PBN is an ideal product component of break rings for horizontal casting machines. If you also need an insulator for a high-temperature furnace or vacuum system, you would be better off using PBN.

Furthermore, highly oriented pyrolytic graphite (HOPG) is utilized in x-ray spectrometry as a dispersive component. Manufacturers in the plastic industry use PG to reinforce plastic products. PBN also plays a key role in the automotive industry due to its effective wear resistance as it helps to increase the longevity of motor spare parts or even the engines by reducing wear and tears from friction.

Preguntas frecuentes (FAQ)

¿Cuál es la distinción clave entre el nitruro de boro pirolítico (PBN) y el grafito pirolítico (PG)?

La principal diferencia entre el PBN y el PG reside en su composición. El PG tiene una conductividad térmica significativamente mayor que el PBN: el PG es un conductor eléctrico, mientras que el PBN es un aislante. Gracias a estas propiedades, el PBN es más eficiente en términos de alta resistencia térmica.

¿Qué es un material refractario?

Un material refractario es simplemente un aislante térmico. Son materiales con propiedades que les permiten soportar temperaturas extremadamente altas. También son muy resistentes a ataques químicos y choques.


Conclusión

El nitruro de boro pirolítico y el grafito pirolítico están avanzando a pasos agigantados en las industrias electrónica y aeroespacial. En particular, el PBN garantiza la resistencia térmica, protegiendo los componentes de dispositivos de alta temperatura de daños causados por las altas temperaturas. El PG disipa el calor en los componentes eléctricos.

 

Atrás